

Social media data

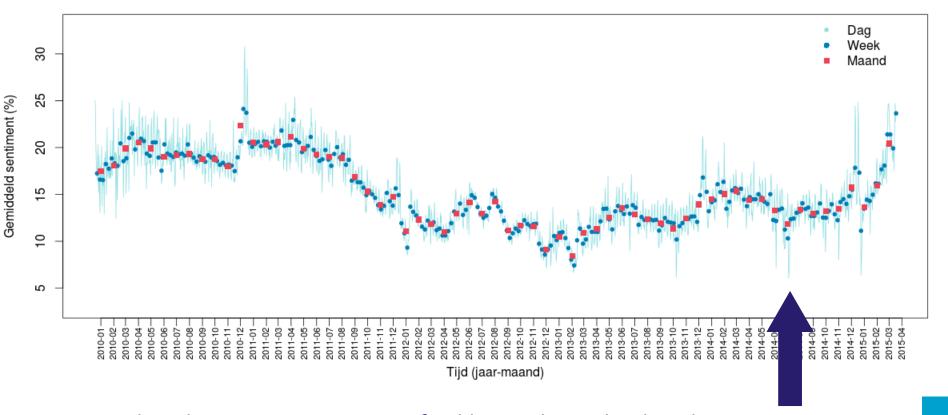
and its potential for official statistics

Piet J.H. Daas and Marco Puts, Joep Burger and Martijn Tennekes

Why social media?

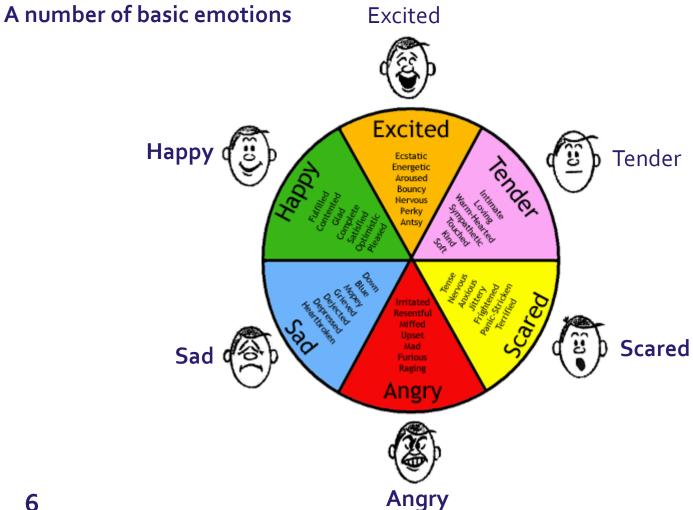
Social media research at Stat. Neth.

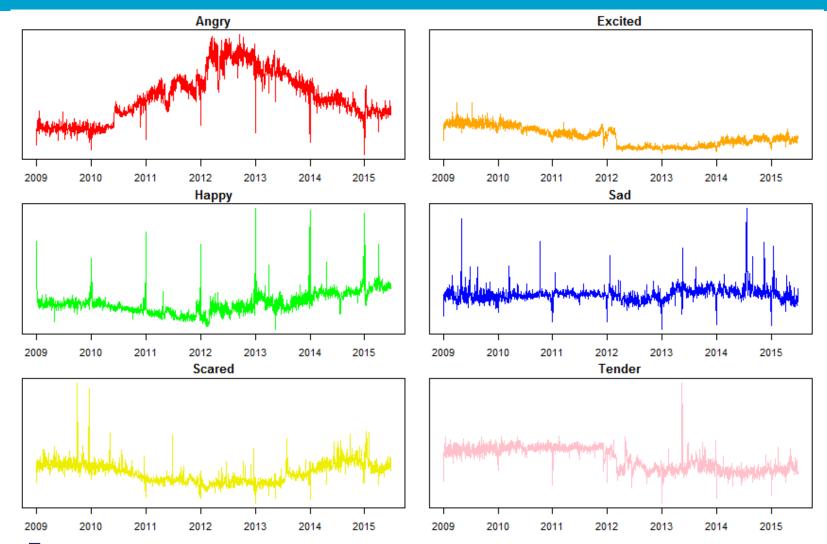
- 1. Compare Twitter topics and theme's CBS publications
- 2. Social media sentiment and consumer confidence
- 3. 'Measure' other basic emotions in social media
- 4. Social *cohesion* and Twitter (for a municipality)
- 5. Selectivity: background characteristics of Twitter users
- 6. Event detection on Dutch highways
- 7. More on the way ...



2) Sentiment indicator

- Determine sentiment in *public* Dutch social media messages
 - Huge amounts of Facebook and Twitter messages
 - (#pos # neg)/#total (day/week/month)
- High correlation (> 0.8) with consumer confidence index
- Both series cointegrate (-> strong association)
- How's the situation now?
 - For > 5 years of data (Jan. 2009- March 2015)


'Sentiment' indicator for NL (beta-version)



3) Basic emotions in Social Media

First results

5) Selectivity: Twitter user characteristics

- Only a part of the Dutch are active on Twitter
- If we want to use this source we need more info
- By determining their 'background' characteristics
 - Such as *gender*, age, income, level of education etc.

- What are the possibilities?
 - Feature extraction is the way to go
 - For gender

4) Picture

TWEETS 1,665 **FOLLOWING** 74

FOLLOWERS 175

FAVORITES 81

Photos & videos

LISTS

3) Messages content

Piet Daas @pietdaas

1)Name

Researcher, Big Data scientist and father of 3.

- Eindhoven
- O Joined February 2010

2) Short bio

40 Photos and videos

r data projects. lies from compani ed (and what didn e hours or days of

Tweets Tweets & replies

Piet Daas retweeted

#BigData News » Apache Spark jumps on the R bandwagon: Apache Spark, the big data processi... bit.ly/1w2lqJo via @BigDataNetwork

Piet Daas retweeted

Dr. Diego Kuonen @DiegoKuonen · Feb 21

Is redoing scientific research the best way to find truth? sciencenews.org/article/redoin...

#Science #BigData #Reproducibility

Studied a Twitter sample

- From a list of Dutch Twitter users (~330.000)
- A random sample of 1000 unique ids was drawn
- Of the sample:
 - 844 profiles still existed
 - 844 had a name
 - 583 provided a short bio
 - 473 created 'tweets'
 - 804 had a 'non-default' picture

Default Twitter picture

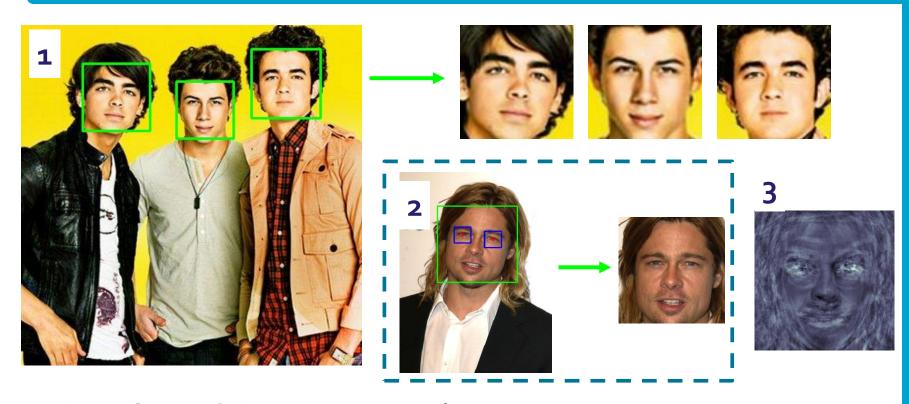
- 409 Men (49%)
- 282 Women (33%)
- 153 'Others' (18%)
 - companies, organizations, dogs, cats, 'bots'...

Gender findings: 1) First name

- Used Dutch 'Voornamenbank' website (First name database)
- Score between 0 and 1 (female male); 676 of 844 (80%) names were registered
- Unknown names scored -1 (usually companies/organizations)

Gender findings: 2) Short bio

- If a short bio is provided
 - Quite a number of people mention there 'position' in the family
 - Mother, father, papa, mama, 'son of', etc.
 - Sometimes also occupations are mentioned that reflect the gender ('studente')
 - 155 of 583 (27%) indicated there gender in short bio
 - Need to check both English and Dutch texts


Gender findings: 3) Tweets content

- In cooperation with University of Twente (Dong Nguyen)
- Machine learning approach that determines gender specific writing style
- Language specific: Messages need to be Dutch!
 - 437 of 473 (92%) persons that created tweets could be classified

Gender findings: 4) Profile picture

- Use OpenCV to process pictures
 - 1) Face recognition
 - 2) Standardisation of faces (resize & rotate)
 - 3) Classify faces according to gender
 - 603 of 804 (75%) profile pictures had 1 or more faces on it

Gender findings: overall results

	Diagnostic Odds Ratio (log)
First name	4.33
Short bio	2.70
Tweet content	1.96
Picture (faces)	0.57

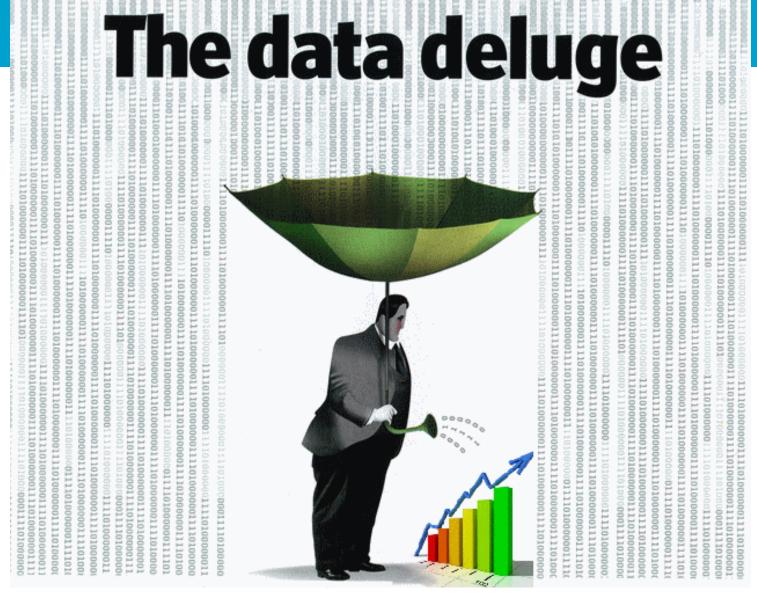
Diagnostic Odds Ratio = (TP/FN) / (FP/TN)

random guessing log(DOR) = 0

- Multi-agent findings
 - Need 'clever' ways to combine these
 - Take processing efficiency of the 'agent' into consideration

Concluding remarks

- Social media is a difficult source to study
 - Contains a lot of 'noise'
- Social media is a secondary data source
 - Produced for a 'reason' not identical to the one we want to use it for
 - A paradigm shift is needed (need a different mindset)
 - Try to improve quality (reduce noise; apply filter)
 - Make use of the large volume of data available
- Analysing texts and pictures is different/difficult
 - Learn by doing and by cooperating with experts
- Social media produces interesting results but
 - It is a relatively new area for official statistics, so a lot needs to be checked (this takes time)
- There are certainly possibilities for official statistics but


The Future

The future of statistics looks

BIG

